Displaying 266 resources
1D Convolutional Neural Networks
This lecture overviews 1D Convolutional Neural Networks that has many applications in 1D signal analysis.
Graph-Based Pattern Recognition
This lecture overviews Graph-Based Pattern Recognition that has many applications in data clustering and dimensionality reduction.
Introduction to Machine Learning
This lecture will cover the basic concepts of Machine Learning to alleviate inconsistencies towards concept and notation accuracy. Supervised, self-supervised, unsupervised, semi-supervised learning. Multi-task Machine Learning.
Dimensionality Reduction
This lecture overviews Dimensionality Reduction that has many applications in object clusring and object recognition. It covers the following topics in detail: Feature selection. Principal Component Analysis. Linear Discriminant Analysis.
Distance-based Classification
This lecture overviews Distance-based Classification that has many applications in classification. It covers the following topics in detail: k-Nearest neighbor classification, Nearest neighbor graphs Supervised Learning Vector Quantization, LVQ1/2/3.
Kernel methods
This lecture overviews Kernel Methods that have many applications in classification and clustering. It covers the following topics in detail: Kernel Trick. Kernel Matrix. Kernel PCA. Kernel correlation and its use in object tracking. Kernel k-means.