Connecting Generafive Al and Robotics

Edward Johns

e RObOt Learning Lab

at

Imperial College
London

22nd November 2024

Physical Intelligence Figure
October 315" 2024 November 19t 2024

Stanford

INTELLIGENCE

T. Zhao et al., 2023

Vision & Language & Action

Vision
Language

Think of a Random Task ...

Think of a Random Task ...

Teltonika Electronics Manufacturing Services Kuangwu (Foshan) Audio Equipment Co.
2021 2024

We're Going to Need a Lot of Demonsirations...

Object X Robot

Instances Embodiments

Looking Ahead

100 %
% of tasks solvable
I generalisation
% of tasks with demos
0%

Time

Vision & Language & Action

Huge quantity of

Very little
available data

available data

Language

Vision & Language & Action

° /
Huge quantity of Very little
available data available data

'

Language

Can Large Language Models Alone Solve Robotics Taskse

Can Large Language Models Alone Solve Robotics Taskse

A

’)))“ Wipe the plate with
the sponge "

Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Can Large Language Models Alone Solve Robotics Taskse

Single task-agnostic prompt

’)))“ Wipe the plate with
the sponge " n

Object detection

(But no trajectory optimisers,
demonstrations, or action primitives)

Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Can Large Language Models Alone Solve Robotics Taskse

Task-agnostic prompt:

INPUT: [INSERT EE POSITION], [INSERT TASK]

MAIN_PROMPT = \

"""You are a sentient AI that can control a robot arm by generating Python code which outputs a list of trajectory points for the robot arm end-effector to follow to complete a given user command.
Each element in the trajectory list is an end-effector pose, and should be of length 4, comprising a 3D position and a rotation value.

AVAILABLE FUNCTIONS:

You must remember that this conversation is a monologue, and that you are in control. I am not able to assist you with any questions, and you must output the final code yourself by making use of the available
information, common sense, and general knowledge.

You are, however, able to call any of the following Python functions, if required, as often as you want:

1. detect_object(object_or_object_part: str) —> None: This function will not return anything, but only print the position, orientation, and dimensions of any object or object part in the environment. This information
will be printed for as many instances of the queried object or object part in the environment. If there are multiple objects or object parts to detect, call one function for each object or object part, all before
executing any trajectories. The unit is in metres.

2. execute_trajectory(trajectory: list) —> None: This function will execute the list of trajectory points on the robot arm end-effector, and will also not return anything.

3. open_gripper() -> None: This function will open the gripper on the robot arm, and will also not return anything.

4. close_gripper() —> None: This function will close the gripper on the robot arm, and will also not return anything.

5. task_completed() —> None: Call this function only when the task has been completed. This function will also not return anything.

When calling any of the functions, make sure to stop generation after each function call and wait for it to be executed, before calling another function and continuing with your plan.

ENVIRONMENT SET-UP:
The 3D coordinate system of the environment is as follows:
1. The x-axis is in the horizontal direction, increasing to the rig
2. The y-axis is in the depth direction, increasing away from you.
3. The z-axis is in the vertical direction, increasing upwards.
robot arm end-effector is currently positioned at [INSERT EE POSITION], with the rotation value at @, and the gripper open.
robot arm is in a top-down set-up, with the end-effector facing down onto a tabletop. The end-effector is therefore able to rotate about the z-axis, from -pi to pi radians.
end-effector gripper has two fingers, and they are currently parallel to the x-axis.
gripper can only grasp objects along sides which are shorter than 0.08.
Negative rotation values represent clockwise rotation, and positive rotation values represent anticlockwise rotation. The rotation values should be in radians.

COLLISION AVOIDANCE:
If the task requires interaction with multiple objects

1. Make sure to consider the object widths, lengths, and heights so that an object does not collide with another object or with the tabletop, unless necessary.
2. It may help to generate additional trajectories and add specific waypoints (calculated from the given object information) to clear objects and the tabletop and avoid collisions, if necessary.

VELOCITY CONTROL:
1. The default speed of the robot arm end-effector is 100 points per trajectory.
2. If you need to make the end-effector follow a particular trajectory more quickly, then generate fewer points for the trajectory, and vice versa.

CODE GENERATION:

When generating the code for the trajectory, do the followin

1. Describe briefly the shape of the motion trajectory required to complete the task

2. The trajectory could be broken down into multiple steps. In that case, each trajectory step (at default speed) should contain at least 100 points. Define general functions which can be reused for the different
trajectory steps whenever possible, but make sure to define new functions whenever a new motion is required. Output a step-by-step reasoning before generating the code.

3. If the trajectory is broken down into multiple steps, make sure to chain them such that the start point of trajectory_2 is the same as the end point of trajectory_1 and so on, to ensure a smooth overall trajectory.
Call the execute_trajectory function after each trajectory step.

4. When defining the functions, specify the required parameters, and document them clearly in the code. Make sure to include the orientation parameter.

5. If you want to print the calculated value of a variable to use later, make sure to use the print function to three decimal places, instead of simply writing the variable name. Do not print any of the trajectory
variables, since the output will be too long.

6. Mark any code clearly with the python and tags.

INITIAL PLANNING 1:
If the task requires interaction with an object part (as opposed to the object as a whole), describe which part of the object would be most suitable for the gripper to interact with.
Then, detect the necessary objects in the environment. Stop generation after this step to wait until you obtain the printed outputs from the detect_object function calls.

INITIAL PLANNING 2:

Then, output Python code to decide which object to interact with, if there are multiple instances of the same object.

Then, describe how best to approach the object (for example, approaching the midpoint of the object, or one of its edges, etc.), depending on the nature of the task, or the object dimensions, etc
Then, output a detailed step-by-step plan for the trajectory, including when to lower the gripper to make contact with the object, if necessary.

Finally, perform each of these steps one by one. Name each trajectory variable with the trajectory number.

Stop generation after each code block to wait for it to finish executing before continuing with your plan.

The user command is " [INSERT TASK]".

Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Can Large Language Models Alone Solve Robotics Taskse

| ‘ \ p N
| ‘r ¥ -
| |
€ | :
1 —,
-
A 1
=/
k]

$ “ Wipe the plate with ® “ Sshake the $) " Place the apple
the sponge " mustard botfle ™ in the bowl "

1 - 47 l ‘ 1
\ b { . . S
\: ' L X L ! o VN -
; W g7 > . y /) v
i.;n |: 4 Y 7
1

')))“ Draw a five-pointed star ’»)“ Open the bottle cap " ’») “ Move the lonely object
10cm wide on the table to the others

with a pen "
Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Can Large Language Models Alone Solve Robotics Taskse

MAIN PROMPT SUCCESS RATE ON 26 TASKS

pick the chip bag on the left of the table

pick the rightmost can

pick the fruit in the middle

pick the chip bag which is to the right of the can
knock over the left bottle

move the fruit which is on the right towards the bottle
move the banana near the pear

push the bottle on the left side to the orange

move the can to the bottom of the table

move the lonely object to the others

push the can towards the right

use the sponge to clean the can

place the apple in the bowl

pick the apple from the bowl and place it on the table
wipe the plate with the sponge

shake the mustard bottle

stir the mug with the spoon

draw a five-pointed star 10cm wide on the table with a pen
drop the ball into the cup

align the bottle vertically

open the bottle cap

insert the bread into the toaster

pick up the bowl

move the pan to the left

wipe the table with the sponge, while avoiding the plate on the table

draw a circle 10cm wide with its centre at [0.0,0.3,0.0] with the gripper closed

averace [

20 40 60
SUCCESS RATE (%)

Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Can Large Language Models Alone Solve Robotics Taskse

“"Pick up the bowl'

Kwon, Di Palo, and Johns, “Language Models as Zero-Shot Trajectory Generators”, RA-Letters 2024

Vision & Language & Action

Huge quantity of

Very little
available data

available data

'

Language

OpenAl’s DALL-E 2 Arrives

“An astronaut riding a horse “Teddy bears shopping for
in a photorealistic style” groceries IN Ancient Egyp’r”

Generafive Al as Imagination Engines

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

Generafive Al as Imagination Engines

Initial scene

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

Generafive Al as Imagination Engines

A fork, a knife, a plate,
and a spoon, top-down

Initial scene DALL-E image

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

Initial Observation

Mask R-CNN

&
CLIP
&
Image
Captioning

Created Arrangement

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

DALL-E-Bot

Object-Level Representation

Segmentation Masks

N\ -@/

Visual Semantic Features

Robot
Execution

Target Poses

Object Captions

a fork with a black handle on a wooden table

a knife on top of a wooden table

an empty white plate on a wooden table

a spoon with a black handle on a wooden table

Object
Matching &
Pose
Estimation

Object-Level Representation

“A fork, a
knife, a é)late,
an
a spoon,
top-down”

Prompt
Generation

Web-Scale

Diffusion Model,
e.g. DALL-E

Mask E-CNN
CLIP

Generated Image

DALL-E-Bot

Inifial _ A fork, a knife, a plate, and a spoon, top-down
observation

I
A 15
. G

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

DALL-E-Bot

DALLE-B0E
Diniheg Scene

Goalimagelifom DALL:E

Einal'anrangement

‘&>)
1 Wy
&

Al

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

DALL-E-Bot

DALL-EE0t : Y\l pALLE-Bot S\
Offfiee Scene@ r ' Ofifice Seane S i

’.

Gall imae@ fron DALLHE) Geall imae [fronm DALLHE

Finallairangement e = Finalarangement

TR
.

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

DALL-E-Bot

DALLEE0R S\ K, DALLEE0R
Fruit Scen@ X 2 Fruik Scene

Geal imaege [rom RALLHE y Geal imaege [ronm DALLE

Finallairangement 4 e 3 Finaljairangement

oo

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

DALL-E-Bot

DALL-E-Bot with DALL-E-Bot
autoregression without filtering

Random Geometric DALL-E-Bot

Bligllgle
scene

Office
scene

Fruit
scene

DALL-E Final DALL-E Final DALL-E Final
image scene image scene image scene

Kapelyukh, Vosylius, and Johns, “DALL-E-Bot: Introducing Web-Scale Diffusion Models to Robotics”, in RA-Letters 2023

Vision & Language & Action

Huge quantity
of available
data

Very little
available data

Language

IN-Context Learning in LLMs

Complete the pattern:

(1. 1), (1,2), (2, 2), (2, 1)
(1.3), (1. 6). (4, 6), (4. 3)
(5. 1), (5. 3),(7.3), (7. 1)
(6, 4), (6, 6), (8. 6),

ChatGPT

-)

IN-Context Learning in LLMs

Complete the pattern:

(1. 1), (1,2), (2, 2), (2, 1)
(1.3), (1. 6). (4, 6), (4. 3)
(5. 1), (5. 3),(7.3), (7. 1)
(6, 4), (6, 6), (8. 6),

ChatGPT

IN-Context Learning in Roboticse

Complete the pattern:

Demonstration 1:
(01.01). (02.05), (03.03), ...
Demonstration 2:
(01.01). (02,Q9), (03,03), ...
+
Test:

(04 ...)

ChatGPT

Keypoint Action Tokens

Extract DINO features from
demo images.

—> | DINO-VIT | —

—> | DINO-VIT| — n

(M, N, 6528)

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

© ©

Extract DINO features from Extract K descriptor vectors
demo images. through a Best Buddies

Nearest Neighbours matching
process.

—> | DINO-VIT | —

q

L]

— | DINO-VIT| — TV

(M, N, 6528) K x (1,1,6528)

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

© © O

Extract DINO features from Extract K descriptor vectors Find the closest descriptors to the K vectors in
demo images. through a Best Buddies novel images to obtain the keypoints.
Nearest Neighbours matching Project in 3D world coordinates through calibrated
process. RGBD camera.

—> | DINO-VIT| —

—> | DINO-VIT| —

(M, N, 6528) K x (1,1,6528)

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

Providing Demonstrations " 4

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

e | |

[

1OoKe ﬂ.J,./
@@@m@%&ﬂm@}n

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

10x

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Keypoint Action Tokens

=
-

== KAT
KeyAct-DP

Diffusion Policy

.t
o

Q
o)

o
T

=
I

o
o

)
=
—
"
0
—
——
O
L
O
v
V9
09
0
O
O
2
)

15 20 25 30
Number of Demos

Di Palo and Johns, “Keypoint Action Tokens Enable In-Context Imitation Learning in Robotics”, RSS 2024

Vision & Language & Action

R
Huge quanfity

of available

data \

Very little
available data

IN-Context Learning in Robofics

1. What are the optimal inductive biasese

2. How can we generate the training data?

Instant Policy

State Representation Joint , Current State and Future Actions Representation

Current State Action 1 Action T

|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
/

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion”, 2024

Instant Policy

Diffusion

State Representation

\‘. Current State Action 1 Action T

Current State

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion”, 2024

Instant Policy

The only training data we need:. random, simulated “pseudo-demonstrations”

pseudo-task 1

pseudo-task 2

pseudo-task 3

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion”, 2024

Instant Policy

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion”, 2024

Instant Policy

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion’™, 2024

Instant Policy

Vosylius and Johns, “Instant Policy: In-Context Imitation Learning via Graph Diffusion’™, 2024

Fine-Tuning vs In-Context Learning

Paper Towel Replacement
(Bi-UR5e)

10
Fine-Tuning Data (Hours)

Physical Intelligence, 2024

Fine-Tuning vs In-Context Learning

Physical Intelligence, 2024 Vitalis and Johns, 2024

Vision & Language & Action

Huge quantity
of available
data

Very little
available data

Language

Acknowledgements

Kamil Shikun Norman Vitalis Ivan Georgios Pietro Yifei
Dreczkowski Liu Di Palo Vosylius Kapelyukh Papagiannis Vitiello Ren

“:"‘\

ERSR@ S m
Eggier::;i%% and rhysicai Sciences dyson @ 51? éi;?::g Sn gy

e RObot Learning Lab

ImperiaalltCoIIege Q U e S Ti O n S 2

London

DA

K e 1N can
Keypoint lokens

(inputitollLMitogetheriwithitokenised demos))

www .robot-learning.uk

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

