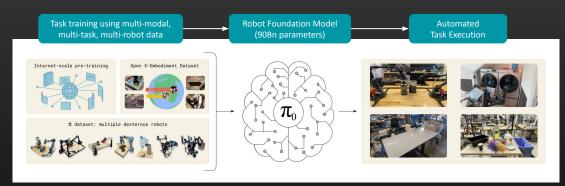


Al powered robotics for the manufacturing industry

Example of Manual Touch Labor in Low-Volume & High-Mix Industry

Automation is costly & complex for "cumulative" manual touch labor manufacturing

What's wrong with Manual Touch Labor?


Capacity: lack of available workforce, worsening demographics **Quality**: unskilled, untrained personnel and human limitations **Customization**: slow and expensive from design to production

Robotization of Touch Labor

Embodied GenAI-Powered Robotics

General-purpose Robot Foundation Models bringing AI in the physical world

Dexterous Limbs
Word Representation
Multimodal Prompting
Visual Language Action Model
Machine Learning and Reasoning

Physical Intelligence (π)

An Envelope of Manufacturing Touch Labor Tasks to Execute

An Envelope of Manufacturing Touch Labor Tasks to Execute

Major Challenges for Cumulative Manufacturing

- 1. Current automation solutions lead to expensive & specific "Islands of Automation"
- Work Instructions for Touch Labor tasks made by humans, for humans, with lots of common sense needed.
- 3. Difficult integration into enterprise automation systems
- 4. Current Al tools have fundamental limitations for manufacturing

Fundamental limitations of end-to-end data-driven Robot Foundation Models

End-to-end data-driven Al approach not always appropriate

Interaction & coordination with multiple agents difficult

End-to-end data-driven Ai approach not always appropriate

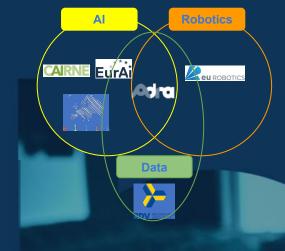
Additional requirements for cumulative manufacturing with "touch"

- Safe & Trustworthy Embodiment : cannot hallucinate !
- Strong Guarantees: continuous quality checks, repeatability, accuracy,...
- Explainable : cause of failed actions must be identified and corrected
- Data requirements : quantity, availability, standardization, ownership,...
- Force & Motion control specific for touch manufacturing
- Frugal in computational, energy, data,... requirements
- Open for affordability (not proprietary), transparency, and modularity

Strong Guarantees and No Acceptance of Failure in Product Conformity

©2024 Generative Robotics - Private and confidential

Global Safety Compliance


with Multiple Tasks to Execute

The Public-Private Partnership between the European Commission and the AI, Data, and Robotics ecosystem

Why Adra?

- Drive the European Future around AI, Data, and Robotics
- Create value through leveraging the convergence of Al, Data and Robotics
- Unify European ADR research bodies and industry to one single strong voice
- Help formulating research & innovation objectives
- Address short-term topics (sustainability, ecological footprint, regulation)
- Contribute to creating a European environment for new ideas

Industry Pilots & Applications

Intelligent Robotics for Industry: Identifying High-Impact Pilots and Applications in Manufacturing

Intelligent Robotics for Industry – Identify High-Impact Pilots & Applications

Objective

Identify high-impact applications of (Gen)AI-enabled robotics in the manufacturing industry to serve as reference points for Europe's Intelligent Robotics Roadmap

Deliverables

- Broad consultation on representative industrial ecosystem (end-users!)
- Market Pull in complement to Technology Push
- High-impact challenges for competitiveness, societal development, and European autonomy
- Required pre-competitive technology capabilities & infrastructures

Co-Lead

- Dr. Cécile HUET, Head of Unit Robotics & Al Innovation and excellence, DG-CNCT, European Commission
- Dr. Thibauld JONGEN, ADRA Director & CEO of Common Sense Robotics

thibauld.jongen@generative-robotics.com